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The aim of this work is to investigate the tensorial filtration law in rigid porous media
for steady-state slow flow of an electrically conducting, incompressible and viscous
Newtonian fluid in the presence of a magnetic field. The seepage law under a magnetic
field is obtained by upscaling the flow at the pore scale. The macroscopic magnetic field
and electric flux are also obtained. We use the method of multiple-scale expansions
which gives rigorously the macroscopic behaviour without any preconditions on the
form of the macroscopic equations. For finite Hartmann number, i.e. ε� Ha� ε−1,
and finite load factor, i.e. ε�K� ε−1, where ε characterizes the separation of scales,
the macroscopic mass flow and electric current are coupled and both depend on the
macroscopic gradient of pressure and the electric field. The effective coefficients satisfy
the Onsager relations. In particular, the filtration law is shown to resemble Darcy’s
law but with an additional term proportional to the electric field. The permeability
tensor, which strongly depends on the magnetic induction, i.e. Hartmann number, is
symmetric, positive and satisfies the filtration analogue of the Hall effect.

1. Introduction
The study of the flow of an electrically conducting fluid through a porous medium

in the presence of a magnetic field spans a range of scientific and engineering domains,
including earth science, nuclear engineering and metallurgy. In nuclear engineering,
knowledge of the MHD (magnetohydrodynamic) flow in a porous medium is required
for the design of a blanket of liquid metal around a thermonuclear fusion–fission
hybrid reactor (McWhirter et al. 1998b). In metallurgy, a permanent magnetic field can
be applied during the solidification process to modify the intensity of the interdendritic
flow of the metallic liquid in the mushy zone, i.e. a porous medium. This technique
allows the reduction of micro–macrosegregation occurring during casting processes
(see Prescott & Incropera 1993, 1996, Lehmann et al. 1998a, b).

The common characteristic of these MHD flows in porous media is that they are
all electromagnetically braked by the Lorentz force

F L = J × B, (1.1)

where B is the magnetic induction applied. J is the electric current density which is
related to the fluid velocity v by Ohm’s law (Moreau 1990):

J = σf(E + v × B),

where σf is the electrical conductivity of the fluid and E is the electric field. Thus, the
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Lorentz force (1.1) takes the form

F L = σfE × B + σf(v × B)× B.
The last term of this relationship represents a braking force per unit of volume due to
the magnetic field. The influence of this braking force by comparison to the viscous
friction is usually measured by the Hartmann number

Ha =

(
σf

µ

)1/2

Bh,

where µ is the fluid viscosity and h is a characteristic length of the flow.
One can find in the literature few experimental and theoretical investigations on

magnetic effects on the filtration law in porous media. The first experimental study was
carried out by Wallace, Pierce & Swayer (1969). In this work, the authors proposed
using magnetic fields to provide a technique for studying pore size distribution in a
porous medium. Experiments on the flow of mercury in porous media (sandstone)
either with no magnetic field, or with a transverse magnetic field and in presence of
crosswise electric currents were performed. The authors observed no change of the
flow rate of mercury through the porous media when a transverse magnetic field is
applied alone. This result may be due to the combination of low magnetic field and
small characteristic pore length, which gives a small Hartmann number. However, they
observed a change of the flow rate of mercury when a transverse magnetic field and an
electric current were applied simultaneously. In order to validate these experimental
observations, Rudraiah, Ramaiah & Rajasekhar (1975) carried out a theoretical and
numerical study of Hartmann flow over a non-conducting permeable bed. In that
work, magnetic effects are considered in the filtration law in a phenomenological way
by the direct introduction in the isotropic Darcy’s law (Darcy 1856) of a magnetic
term proportional to the Lorentz force (1.1),

q =
k

µ
(−∇p+ J × B), (1.2)

where q is the flow rate vector, k is the permeability, ∇p is the fluid pressure gradient.
Rudraiah et al. (1975) found that the volume rate of flow through porous media
decreases considerably on increasing the magnetic field. Under particular conditions
(B = 0, 25 T, σf = 106 Ω−1 m−1, µ = 1.6× 10−2 Pa s, k = 5× 10−6 m2, Ha = 8.8), they
found about 92% fractional decrease in the volume rate of flow of mercury due to
the magnetic field. More recently, an analytical model for inertialess magnetohydro-
dynamic flow in packed beds has been developed by McWhirter et al. (1998b). The
effect of the conductivity of the porous medium is accounted for by an analogy with
Hartmann flow in a cylindrical duct under an external load. The predictions of this an-
alytical model were then compared with experimental data on the flow of an eutectic
mixture of sodium and potassium NaK (σf = 6× 106 Ω−1 m−1) through packed beds
of stainless steel spheres (McWhirter, Crawford & Klein 1998a). Good agreement
was found between data for a wide range of Hartmann numbers (Ha < 250).

Also, several analytical and numerical works in the literature are devoted to the
study of the magnetohydrodynamic flow of a conducting fluid through a porous
medium between two parallel fixed plates (Ram & Mishra 1977; Tawil & Kamel
1994), or bounded by an infinite vertical plate (Raptis & Perdikis 1985; Yih 1998), or
in a circular pipe (Ram & Mishra 1977) or during the solidification process (Prescott
& Incropera 1993). The expression most often used in these works to describe the
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flow in the porous medium is

ρ
∂〈v〉
∂t

= −∇p+ µ∇2〈v〉 − µ〈v〉
k

+ J × B, (1.3)

where 〈v〉 is the mean fluid velocity in the porous medium, which is equivalent to
q in (1.2). The fluid flow also satisfies the zero-divergence condition. Equation (1.3)
reduces to the modified Darcy’s law (1.2) for low values of the permeability k and to
the Navier–Stokes equation with magnetic effects for high values of k. The transition
between these two regimes occurs when the Brinkman term µ∇2〈v〉 is of the same
order of magnitude as µ〈v〉/k (Brinkman 1947). Thus, equation (1.3) can be simply
viewed as a superposition of Darcy’s law and the Navier–Stokes equation. It is of
practical interest for numerical investigations. However, Levy (1981, 1983) has shown
that Brinkman’s equation is valid for very large characteristic porosity φc ≈ 1− 3ε2,
where the scale ratio ε is defined by l/L with l and L the characteristic lengths of the
heterogeneities and the macroscopic sample or excitation, respectively. The porosity
φ is the ratio of the pore volume to the total volume. For a typical value ε = 10−3,
which yields φc ≈ 0.999997. For such values of φc, the solid is generally not connected
and the fluid–solid system behaves as a suspension, which cannot be of Brinkman
type. Therefore the range of validity of equation (1.3) is quite questionable.

Finally, considering a porous medium saturated by an electrolyte and neglecting
the Lorentz force, Pride (1994) has derived by volume averaging the macroscopic
description for the coupled electromagnetics and acoustics. This consists of two
coupled Maxwell and Biot equations (Biot 1956). Due to the small Lorentz force,
effective coefficients do not depend on the magnetic field and the coupling between
mass and electric fluxes is shown to be symmetrical in the case of isotropic media.

The aim of this work is to investigate the tensorial filtration law in rigid porous
media for steady-state slow flow of an electrically conducting, incompressible and
viscous Newtonian fluid in the presence of a magnetic field. We have in mind
applications such as MHD processes in metallurgy, where the Lorentz force cannot be
neglected. We use an upscaling technique, i.e. the method of multiple scale expansions,
to determine the macroscopic flow from the description of the physical mechanisms at
the pore scale. This upscaling technique allows the equivalent macroscopic behaviour
of a heterogeneous system, as for example a porous medium, to be derived if the
condition of separation of scales is satisfied (Bensoussan, Lions & Papanicolaou 1978;
Sanchez-Palencia 1980; Auriault 1991):

ε =
l

L
� 1, (1.4)

where l and L are the characteristic lengths of the heterogeneities and the macroscopic
sample or excitation, respectively. Under these conditions, the corresponding macro-
scopic descriptions are intrinsic to the geometry of the medium and the phenomenon.
They are also independent of the macroscopic boundary conditions. In this study,
we follow the approach suggested in Auriault (1991). The macroscopic equivalent
model is obtained from the description at the heterogeneity scale by: (i) assuming the
medium to be periodic, without loss of generality since (1.4) is fulfilled; (ii) writing the
local description in a dimensionless form; (iii) evaluating the dimensionless numbers
with respect to the scale ratio ε; (iv) looking for the unknown fields in the form
of asymptotic expansions in powers of ε; (v) solving the successive boundary-value
problems that are obtained after introducing these expansions in the local dimension-
less description. The macroscopic equivalent model is obtained from compatibility
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Figure 1. Representative elementary volume or periodic cell Ω.

conditions which are the necessary conditions for the existence of solutions to the
boundary-value problems.

The description at the pore scale of the magnetohydrodynamic flow of a conducting
fluid in a rigid porous medium is given in § 2. This description is made dimensionless
and we evaluate the different dimensionless numbers with respect to the scale ratio
ε. Section 3 is devoted to the upscaling for steady-state flow with finite Hartmann
number, ε� Ha� ε−1. The macroscopic mass flow and electric current are coupled
and both depend on the macroscopic gradient of pressure and electric field. The
seepage law under the magnetic field is shown to resemble Darcy’s law but with
an additional term proportional to the electric field. The properties of the effective
coefficients are investigated in § 4. It is shown that the effective coefficients which
strongly depend on the magnetic induction, i.e. the Hartmann number, satisfy Onsager
relations. In particular, it is shown that the permeability tensor is symmetric, positive
and satisfies the filtration analogue of the Hall relation. However, unlike Onsager
approach, the symmetry of the coupling is obtained here from the local field properties
by using a deterministic approach. Finally, an example based on the well-known
Hartmann problem (Hartmann 1937) is presented in § 5.

2. Local flow description and estimations
2.1. Local flow description

Consider the flow of an electrically conducting, incompressible and viscous Newtonian
fluid through a rigid conducting porous medium in the presence of a magnetic
field. The porous medium is spatially periodic and consists of repeated unit cells
(parallelepipeds). A period is shown in figure 1. There are two characteristic length
scales in this problem: the characteristic microscopic length scale l of the pores and
of the unit cell, and the macroscopic length scale that may be represented by either
the macroscopic pressure drop scale or by the sample size scale. For simplicity, we
assume both macroscopic length scales to be of similar order of magnitude, O(L).
Moreover we assume that the two length scales l and L are well separated: l � L.
The unit cell is denoted by Ω and is bounded by ∂Ω, the fluid part of the unit cell
is denoted by Ωf , the solid part of the unit cell is denoted by Ωs, and the fluid–solid
interface inside the unit cell is Γ .

In this study, we assume a steady-state slow flow. Consequently, in the pores, the
governing equations for the flow of an electrically conducting and incompressible
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Newtonian fluid with invariant physical properties are (Moreau 1990)

−∇p+ µ∇2v + J × B = 0 in Ωf, (2.1)

∇ · v = 0 in Ωf, (2.2)

where v is the velocity, p is the pressure, µ is the viscosity and B is the magnetic
induction in the fluid. The current density J in the fluid is related to the fluid velocity
v and the electric field E by Ohm’s law, and to the magnetic field H by Maxwell’s
relation

J = σf(E + v × B) = ∇×H in Ωf, (2.3)

where σf is the electrical conductivity. The conducting solid skeleton Ωs is assumed
to be rigid. In the solid, the above relation reduces to

J = σsE = ∇×H in Ωs. (2.4)

From (2.3) and (2.4) we have

∇ · J = 0 in Ω. (2.5)

The following relations are also valid:

∇× E = 0 in Ω, (2.6)

∇ · B = 0 with B = µ∗H in Ω. (2.7)

For simplicity, we have assumed that the conductivity σ and the magnetic permeability
µ∗ are isotropic. In particular we do not consider the Hall effect at the microscale.
Finally, the set of equations (2.1)–(2.7) is completed by the adherence condition on
the solid–liquid interface Γ ,

v = 0 on Γ , (2.8)

and the continuity on Γ of the normal components of the magnetic induction and
the current density, and of the tangential components of the magnetic field and the
electric field

(Bf − Bs) ·N = 0 on Γ , (2.9)

(J f − J s) ·N = (σfEf − σsE s) ·N = 0 on Γ , (2.10)

(Hf −H s)×N = 0 on Γ , (2.11)

(Ef − E s)×N = 0 on Γ , (2.12)

where N is the unit outward vector of Γ .

2.2. Estimations of dimensionless numbers

Since the ratio between microscopic and macroscopic length scales is small, the
fundamental perturbation parameter ε is chosen to be

ε =
l

L
, ε� 1.

The independent dimensionless numbers which characterize the magnetohydrody-
namic liquid flow problem may be related to the magnitude of ε. We use the local
length scale of a pore l as the characteristic length scale for the variations of the
differential operators: we apply the so-called microscopic point of view (Auriault
1991). The local flow description introduces six dimensionless numbers: the ratio Ql
of the pressure and the viscous forces, the Hartmann number Hal that characterizes
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the ratio of the electromagnetic forces to the viscous forces, the ratio Rml (magnetic
Reynolds number) of σf v × B to ∇ × H , the load factor K which is the ratio of
the electric field to v × B and the ratios S and M of the electrical conductivities and
of the magnetic permeabilities, respectively, of the fluid and the solid skeleton. For
evaluating these dimensionless numbers, we introduce characteristic values (denoted
with the subscript c) that are related to the physical phenomenon (pressure drop pc,
fluid velocity vc, electric field Ec, magnetic induction Bc and length l). We obtain

Ql =
|∇p|
|µ∇2v| =

pcl

µcvc
,

Hal =

( |σf v × B|
|µ∇2v|

)1/2

= Bcl

(
σfc

µc

)1/2

,

Rml =
|σf v × B|
|∇×H | = µ∗fcσfcvcl,

K =
|E |
|v × B| =

Ec

vcBc
,

S =
σfc

σsc
, M =

µ∗fc
µ∗sc
.

It can be shown by simple physical reasoning (Auriault 1991) that the problem
is homogenizable if Ql = O(ε−1). The other dimensionless numbers depend on the
problem under consideration. For example, in a metallic mushy zone (Moreau 1990;
Lehmann et al. 1998a) σsc ≈ σfc ≈ 106 Ω−1 m−1, µ∗fc ≈ µ∗sc and µ∗cσc ≈ 1 m−2 s, µc ≈
10−3 Pa s, Bc ≈ 1 T, Ec ≈ 10−2 V m−1, l ≈ 100 µm, L ≈ 10 cm, vc ≈ 10−3 m s−1. Thus we
obtain ε ≈ 10−3 and Hal = O(1), Rml = O(ε2), K = O(1), S = O(1) and M = O(1).
For simplicity we use similar notation for dimensionless and dimensional quantities. The
microscopic dimensionless set of equations that describes the magnetohydrodynamic
flow in a porous medium is the following, in which all quantities (p, v, B, H , E , J , µ,
µ∗, σ) are now dimensionless (O(1)):

µ∇2v − ε−1∇p+ σf(E + v × B)× B = 0 in Ωf, (2.13)

∇ · v = 0 in Ωf, (2.14)

and we have

ε2σ(E + v × B) = ∇×H in Ω, (2.15)

∇ · J = ∇ · [σ(E + v × B)] = 0 in Ω, (2.16)

∇ · B = 0, B = µ∗H in Ω, (2.17)

∇× E = 0 in Ω, (2.18)

v = 0 on Γ , (2.19)

(Bf − Bs) ·N = 0 on Γ , (2.20)

(J f − J s) ·N = (σfEf − σsE s) ·N = 0 on Γ , (2.21)

(Hf −H s)×N = 0 on Γ , (2.22)

(Ef − E s)×N = 0 on Γ , (2.23)
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where N is a unit normal to Γ . In the above equations, the velocity v cancels
out in Ωs. Note that the dimensionless viscosity µ = 1 is maintained in equation
(2.13) for notation consistency. Equation (2.15) shows that up to the second order
of approximation, ∇ × H is null and H is the gradient of a potential ψ which can
be chosen as it is continuous everywhere. We seek a macroscopic description, at the
scale L. Therefore we have the following estimate

Hc = O
(ψc
L

)
= O

(
ε−1ψc

l

)
.

When using l to normalize, we obtain in the dimensionless form

H = −ε−1∇ψ + O(ε2). (2.24)

Similarly, equation (2.18) shows that the electric field E derives from a potential V .
By following the same route as for H , this is written in the following dimensionless
form:

E = −ε−1∇V . (2.25)

The orders of magnitude of the Hartmann number Ha and the load factorK ensure
the coupling of the velocity field and of the electric flux at the pore scale. Therefore,
we can anticipate that the macroscopic corresponding fluxes, which are averages of
these local fluxes, are also coupled.

3. Homogenization
The next step is to introduce multiple-scale coordinates (Bensoussan et al. 1978;

Sanchez-Palencia 1980). The two characteristic lengths L and l introduce two dimen-
sionless space variables,

x =
X

L
, y =

X

l
,

where X is the physical space variable. The macroscopic space variable x is related to
the microscopic space variable y by x = εy. When using l as the characteristic length
the dimensionless derivative operator becomes

∇ = ∇y + ε∇x,
where the subscripts x and y denote the derivatives with respect to the variables x
and y, respectively. Following the multiple-scale expansion technique (Bensoussan et
al. 1978; Sanchez-Palencia 1980), the velocity v, the pressure fluctuation p, the electric
field E , the electric potential V , the magnetic flux density B, the magnetic field H and
the magnetic potential ψ are sought in the form of asymptotic expansions of powers
of ε

ϕ = ϕ(0)(x, y) + ε ϕ(1)(x, y) + ε2 ϕ(2)(x, y) + · · · ,
where ϕ = v, p,E , V ,B,H , ψ and the corresponding ϕ(i) are periodic functions or
vectors of period Ω with respect to space variable y. Substituting these expansions in
the set (2.13)–(2.25) gives, by identification of like powers of ε, successive boundary
value problems to be investigated.

The magnetic Reynolds number Rm is very small, therefore we first address the
macroscopic description of the magnetic field which is independent of the mass flow
and the electric current.
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3.1. Macroscopic magnetic field and induction

Introducing asymptotic expansions for H and ψ in the relation (2.24) gives at the
lowest order

∇yψ(0) = 0, ψ(0) = ψ(0)(x).

From (2.24), we have at the next order

H (0) = −∇yψ(1) − ∇xψ(0), (3.1)

where ∇xψ(0) is considered as being given. Then ψ(1) is given by the following boundary
value problem which is obtain from (2.17), (2.20) and (3.1):

∇y · [µ∗(∇yψ(1) + ∇xψ(0))] = 0 in Ω, (3.2)

[µ∗f(∇yψ(1)
f + ∇xψ(0))− µ∗s (∇yψ(1)

s + ∇xψ(0))] ·N = 0 on Γ , (3.3)

where ψ(1)(x, y) is Ω-periodic and continuous on Γ . The potential ψ(1) appears as a
linear function of ∇xψ(0), to an added arbitrary function of x:

ψ(1)(x, y) = −m(y) · ∇xψ(0) + ψ̄(1)(x), (3.4)

where mi(y), of zero average, is the solution of the boundary value problem (3.2)–(3.3)
for ∂ψ(0)/∂xj = −δji, where δij is the Kronecker symbol. Note that

〈H (0)〉 = 〈−∇yψ(1) − ∇xψ(0)〉 = −∇xψ(0), (3.5)

∇x × 〈H (0)〉 = 0. (3.6)

Then (2.17) and (2.20) at the order ε yield

∇y · B(1) + ∇x · B(0) = 0 in Ω, (3.7)

(B(1)
f − B(1)

s ) ·N = 0 on Γ . (3.8)

Integrating (3.7) over Ω, using the divergence theorem, relation (3.8) and the period-
icity gives the macroscopic model for the magnetic field:

∇x · 〈B(0)〉 = 0, 〈B(0)〉 = µ∗eff〈H (0)〉 = −µ∗eff∇xψ(0), (3.9)

where µ∗eff is the effective magnetic permeability tensor defined as

µ∗eff
ij =

〈
µ∗
(
Iij − ∂mj

∂yi

)〉
,

where I is the identity tensor. We have

B
(0)
i (x, y) = −µ∗

(
Iij − ∂mj

∂yi

)
∂ψ(0)

∂xj
. (3.10)

A similar result could be obtained by following the method shown in Sanchez-Palencia
(1974).

3.2. Macroscopic mass and electric fluxes

Relation (2.25) gives at the lowest order

∇yV (0) = 0, V (0) = V (0)(x),

and we have

〈E (0)〉 = 〈−∇yV (1) − ∇xV (0)〉 = −∇xV (0), (3.11)

∇x × 〈E (0)〉 = 0. (3.12)



Magnetohydrodynamic flows in porous media 351

From (2.13) at the order ε−1, the lowest-order approximation of the pressure satisfies

∇yp(0) = 0, p(0) = p(0)(x).

The potential V (1), the first-order approximation of the velocity v(0) and the second-
order approximation of the pressure p(1) are determined by the following set which is
obtained from (2.13), (2.14), (2.16), (2.19), (2.21) and (2.25) at the order ε0:

µ∇2
yv

(0) − ∇xp(0) − ∇yp(1) = −σf(−∇yV (1)
f − ∇xV (0) + v(0) × B(0))× B(0) in Ωf, (3.13)

∇y · v(0) = 0 in Ωf, (3.14)

∇y · [σ(−∇yV (1) − ∇xV (0) + v(0) × B(0))] = 0 in Ω, (3.15)

v(0) = 0 on Γ , (3.16)

(σf(∇yV (1)
f + ∇xV (0))− σs(∇yV (1)

s + ∇xV (0))) ·N = 0 on Γ , (3.17)

where V (1), v(0) and p(1) are Ω-periodic. In equation (3.15), v(0) cancels out in Ωs. B
(0)

is given by (3.10). Vector ∇xp(0) is the macroscopic driving pressure force, whereas
∇xV (0) is the macroscopic gradient electric potential.

The above set of partial differential equations will be used in § 5 to determine
the solutions in parallel plane fissures. However, we need an equivalent variational
formulation to study the existence and uniqueness of the solution and to investigate
in § 4 the properties of the effective macroscopic coefficients. Let us introduce two
Hilbert spaces. Space V is the space of Ω-periodic functions α defined in Ω that are
of zero average over Ω and that have the scalar product, for α, β ∈ V,

(α, β)V =

∫
Ω

σ
∂α

∂yi

∂β

∂yi
dΩ.

Throughout the paper dΩ denotes an integration with respect to space variable
y: dΩ = dy1 dy2 dy3. The space W is the space of Ω-periodic, divergence-free vectors
u, defined in Ωf , where the vectors vanish on Γ , and with the scalar product, for u,
v ∈ W,

(u, v)W =

∫
Ωf

µ
∂ui

∂yj

∂vi

∂yj
dΩ.

Now, let us multiply equations (3.13) and (3.15) by u ∈ W and α ∈ V and integrate
over Ωf and Ω, respectively. By using integration by parts, the divergence theorem,
periodicity, and the boundary conditions on Γ , one obtains the equivalent variational
formulation:

∀α ∈ V, (V (1), α)V =

∫
Ω

σ(−∇xV (0) + v(0) × B(0)) · ∇yα dΩ, (3.18)

∀u ∈ W, (v(0), u)W = −
∫
Ωf

u · ∇xp(0) dΩ +

∫
Ωf

σf [(v(0) × B(0))× B(0)] · u dΩ

+

∫
Ωf

σf[(−∇yV (1) − ∇xV (0))× B(0)] · u dΩ. (3.19)

In (3.18), v(0) cancels out in Ωs. Formulations (3.18) and (3.19) and Lax–Milgram
lemma ensure a unique solution for V (1) and v(0) in V and W, respectively. Due to
the linearity of (3.18) and (3.19) with respect to ∇xV (0) and ∇xp(0), V (1) and v(0) are
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linear functions and vectors, respectively, of these quantities, with an added arbitrary
function of x to V (1). They can be put into the form

V (1) = τ · ∇xV (0) + η · ∇xp(0) + V̄ (1)(x), v(0) = −k∇xp(0) − χ∇xV (0), (3.20)

where the vectors τ and η, and the tensors k and χ depend on 〈H (0)〉 = −∇xψ(0) and
y. Therefore, from (3.20) and (3.13), the fluid pressure p(1) also appears as a linear
function of ∇xV (0) and ∇xp(0) with an added arbitrary function of x,

p(1) = −ζ · ∇xV (0) − ξ · ∇xp(0) + p̄(1)(x), (3.21)

where the two vectors ζ and ξ depend on 〈H (0)〉 = −∇xψ(0) and y. Note that −τj ,
−ηj , ζj , ξj , kij and χij are solutions of the boundary value problem (3.13)–(3.17) for
∂p(0)/∂xi = −δij and ∂V (0)/∂xi = −δij , where δij is the Kronecker delta.

Finally, the macroscopic description is obtained from balances (2.14) and (2.16)
and continuity conditions (2.19) and (2.21) at the order ε,

∇y · v(1) + ∇x · v(0) = 0 in Ωf, (3.22)

∇y · J (1) + ∇x · J (0) = 0 in Ω, (3.23)

v(1) = 0, (J (1)
f − J (1)

s ) ·N = 0 on Γ . (3.24)

Integrating relations (3.22) and (3.23) in their respective domains of definition, using
the divergence operator, the periodicity and continuity conditions (3.24) yields

∇x · 〈v(0)〉 = 0, 〈v(0)〉 = −K∇xp(0) − χeff∇xV (0), (3.25)

Kij = 〈kij〉, χeff
ij = 〈χij〉, (3.26)

and

∇x · 〈J (0)〉 = 0, 〈J (0)〉 = −σeff∇xV (0) − ηeff∇xp(0), (3.27)

σeff
ij =

〈
σ

(
∂τj

∂yi
+ Iij

)
+ σεikl χkj B

(0)
l

〉
, ηeff

ij =

〈
σ
∂ηj

∂yi
+ σεikl kkj B

(0)
l

〉
, (3.28)

where εikl is the permutation symbol and I is the identity tensor. In the flow laws
(3.25) and (3.27), K is the permeability, σeff is the effective electric conductivity, χeff is
the electro-osmotic conductivity and ηeff is the electric conductivity associated to the
streaming potential effect.

Note the following points:
(i) The filtration tensor K and the other effective coefficients in (3.25) and (3.27)

depend on the magnetic flux 〈B(0)〉 = µ∗eff〈H (0)〉.
(ii) The macroscopic model given by (3.6), (3.9), (3.12), (3.25) and (3.27) is an

approximation since it relates to first orders of magnitude of macroscopic physical
quantities.

(iii) The macroscopic model is valid, concerning the Hartmann number, in the
range ε� Ha� ε−1 which can be quite large if the separation of scales is good.

(iv) From Levy (1981, 1983), it can be seen that the macroscopic model is valid at
least in the range φ 6 1 − 3ε. In the present analysis that yields φ 6 0.997, which
covers the range of practical interest.

(v) In some cases, the magnetic permeabilities in the fluid and the solid are nearly
the same. When assuming µ∗f = µ∗s , we obtain m = 0 and B(0) = B(0)(x) is a constant
over the period.
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4. Properties of the effective coefficients
Let us first introduce some relations which will be used throughout this section. By

introducing J (0) = σ(−∇yV (1) − ∇xV (0) + v(0) × B(0)) in formulations (3.18) and (3.19),
we obtain successively

1

Ω

∫
Ω

J (0) · ∇yα dΩ = 0, (4.1)

1

Ω
(v(0), u)W − 1

Ω

∫
Ωf

(J (0) × B(0)) · u dΩ = − 1

Ω

∫
Ωf

u · ∇xp(0) dΩ. (4.2)

Subtracting now term by term these two equations yields

1

Ω
(v(0), u)W +

1

Ω

∫
Ω

J (0) · (−∇yα+ u× B(0)) dΩ = − 1

Ω

∫
Ωf

u · ∇xp(0) dΩ. (4.3)

4.1. Properties of the permeability tensor K

To investigate the properties of tensor K we now put ∇xV (0) = 0 in relation (4.3).

4.1.1. K positive

We first study the positivity of K . By letting α = V (1) 6= 0 and u = v(0) 6= 0 in
formulation (4.3), we obtain

1

Ω
(v(0), v(0))W +

1

Ω

∫
Ω

J (0) · (−∇yV (1) + v(0) × B(0)) dΩ = − 1

Ω

∫
Ωf

v(0) · ∇xp(0) dΩ

= K∇xp(0) · ∇xp(0),

where

1

Ω

∫
Ω

J (0) · (−∇yV (1) + v(0) × B(0)) dΩ =
1

Ω

∫
Ω

(J (0))2

σ
dΩ > 0

is the energy dissipated into heat by the Joule effect. The above inequality implies
that

K∇xp(0) · ∇xp(0) >
1

Ω
(v(0), v(0))W > 0,

which shows that tensor K is positive.

4.1.2. K symmetric

We now investigate the symmetries of K . Quantities v(0)
i = kip and V (1) = −ηp are

the solution of (3.18) and (3.19) for ∇xV (0) = 0 and ∂p(0)/∂xi = −δip, where δip is the

Kronecker delta. Consider formulation (4.3) successively with v(0)
i = kip and v(0)

i = kiq ,
V (1) = −ηp and V (1) = −ηq , ui = kiq and ui = kip, α = −ηq and α = −ηp, respectively.
Thus, we obtain

(kip, kiq)W +

∫
Ω

σ

(
∂ηp

∂yi
+ εijk kjp B

(0)
k

)(
∂ηq

∂yi
+ εijk kjq B

(0)
k

)
dΩ

=

∫
Ωf

kpq dΩ = ΩKpq,

(kip, kiq)W +

∫
Ω

σ

(
∂ηq

∂yi
+ εijk kjq B

(0)
k

)(
∂ηp

∂yi
+ εijk kjp B

(0)
k

)
dΩ

=

∫
Ωf

kqp dΩ = ΩKqp.
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Subtracting term by term these two equations yields

Kpq = Kqp, (4.4)

which shows that tensor K is symmetric. However, if Hall’s effect is assumed at
the pore scale, i.e. if the electric conductivity is now a non-symmetrical tensor σ,
σij(B) 6= σji(B) and σij(B) = σji(−B) (see Landau & Lifshitz 1960, p. 96), then it can
be shown that the tensor K is no longer symmetric, Kpq 6= Kqp.

4.1.3. Filtration analogue of Hall’s effect

By adding term by term equations (4.1) and (4.2), we now obtain

1

Ω
(v(0), u)W +

1

Ω

∫
Ω

J (0) · (∇yα+ u× B(0)) dΩ = − 1

Ω

∫
Ωf

u · ∇xp(0) dΩ. (4.5)

Consider formulation (4.5) successively with v
(0)
i = kip(B

(0)) and v
(0)
i = kiq(−B(0)),

V (1) = −ηp(B(0)) and V (1) = −ηq(−B(0)), ui = kiq(−B(0)) and ui = kip(B
(0)), α =

−ηq(−B(0)) and α = −ηp(B(0)), respectively. We obtain, after noting that permeability
K does not depend on space variable y,∫

Ω

σ

(
∂ηp(B

(0))

∂yi
+ εijk kjp(B

(0))B(0)
k

)(
−∂ηq(−B

(0))

∂yi
+ εijk kjq(−B(0))B(0)

k

)
dΩ

+(kip(B
(0)), kiq(−B(0)))W = ΩKpq(−B(0)) = ΩKpq(−〈B(0)〉),∫

Ω

σ

(
∂ηq(−B(0))

∂yi
− εijk kjq(−B(0))B(0)

k

)(
−∂ηp(B

(0))

∂yi
− εijk kjp(B(0))B(0)

k

)
dΩ

+(kiq(−B(0)), kip(B
(0)))W = ΩKqp(B

(0)) = ΩKqp(〈B(0)〉).
Subtracting term by term these two equations yields

Kpq(−〈B(0)〉) = Kqp(〈B(0)〉). (4.6)

This relation is the filtration analogue of the Hall’s effect (see Landau & Lifshitz 1960,
p. 96). It remains valid when Hall’s effect is considered at the pore scale. However,
when the tensor K is symmetric, see equation (4.4), the Hall constant cancels out and
the tensor K appears as an even function of the magnetic field.

4.2. Properties of the conductivity tensor σeff

To investigate the properties of tensor σeff we put ∇xp(0) = 0 in formulations (3.18)
and (3.19). Therefore relation (4.3) is now written

1

Ω
(v(0), u)W +

1

Ω

∫
Ω

J (0) · (−∇yα+ u× B(0)) dΩ = 0. (4.7)

By adding to the two terms of (4.7) the volume average over Ω of −J (0) · ∇xV (0), we
obtain

1

Ω
(v(0), u)W +

1

Ω

∫
Ω

J (0) · (−∇yα− ∇xV (0) + u× B(0)) dΩ

= − 1

Ω

∫
Ω

J (0) · ∇xV (0) dΩ. (4.8)
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4.2.1. σeff positive

Putting now α = V (1) 6= 0 and u = v(0) 6= 0 in formulation (4.8) yields

1

Ω
(v(0), v(0))W +

1

Ω

∫
Ω

(J (0))2

σ
dΩ = − 1

Ω

∫
Ω

J (0) · ∇xV (0) dΩ = σeff∇xV (0) · ∇xV (0) > 0,

which shows that the tensor σeff is positive.

4.2.2. σeff symmetric

In this section, we investigate the symmetries of σeff . Quantities v(0)
i = χip and

V (1) = −τp are the solution of (3.18) and (3.19) for ∇xp(0) = 0 and ∂V (0)/∂xi = −δip.
Consider formulation (4.8) successively with v

(0)
i = χip and v

(0)
i = χiq , V

(1) = −τp and
V (1) = −τq , ui = χiq and ui = χip, α = −τq and α = −τp, respectively. We obtain

(χip, χiq)W +

∫
Ω

σ

(
∂τp

∂yi
+ δip + εijk χjpB

(0)
k

)(
∂τq

∂yi
+ δiq + εijk χjq B

(0)
k

)
dΩ

=

∫
Ωf

σqp dΩ = Ωσeff
qp .

(χiq, χip)W +

∫
Ω

σ

(
∂τq

∂yi
+ δiq + εijk χjqB

(0)
k

)(
∂τp

∂yi
+ δip + εijk χjpB

(0)
k

)
dΩ

=

∫
Ωf

σpq dΩ = Ωσeff
pq .

Subtracting term by term these two equations yields

σeff
pq = σeff

qp , (4.9)

which shows that σeff is symmetric. However, as for the permeability K , assuming
Hall’s effect at the pore scale, yields σeff

pq 6= σeff
qp .

4.2.3. Hall’s effect

By using (4.1), and after subtracting from the two terms of (4.7) the volume average
over Ω of J (0) · ∇xV (0), we obtain

1

Ω
(v(0), u)W+

1

Ω

∫
Ω

J (0) · (∇yα+∇xV (0) +u×B(0)) dΩ = +
1

Ω

∫
Ω

J (0) ·∇xV (0) dΩ. (4.10)

Consider formulation (4.10) successively with v
(0)
i = χip(B

(0)) and v
(0)
i = χiq(−B(0)),

V (1) = −τp(B(0)) and V (1) = −τq(−B(0)), ui = χiq(−B(0)) and ui = χip(B
(0)), α =

−τq(−B(0)) and α = −τp(B(0)), respectively. We obtain, after noting that σeff does not
depend on space variable y,∫

Ω

σ

(
∂τp(B

(0))

∂yi
+ δip + εijk χjp(B

(0))B(0)
k

)
×
(
−∂τq(−B

(0))

∂yi
− δiq + εijk χjq(−B(0))B(0)

k

)
dΩ

+ (χip(B
(0)), χiq(−B(0)))W = Ω σeff

qp (B(0)) = Ω σeff
qp (〈B(0)〉),
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Ω

σ

(
∂τq(−B(0))

∂yi
+ δiq − εijk χjq(−B(0))B(0)

k

)
×
(
−∂τp(B

(0))

∂yi
− δip − εijk χjp(B(0))B(0)

k

)
dΩ

+(χiq(−B(0)), χip(B
(0)))W = Ωσeff

pq (−B(0)) = Ωσeff
pq (−〈B(0)〉).

Subtracting term by term these two equations yields

σeff
pq (−〈B(0)〉) = σeff

qp (〈B(0)〉). (4.11)

This relation represents the Hall effect (see Landau & Lifshitz 1960, p. 96). This
relation remains valid when Hall’s effect is considered at the pore scale. However,

when σeff is symmetric, see equation (4.9), the Hall constant cancels out and σeff

appears as an even function of the magnetic field.

4.3. Properties of χeff and ηeff

4.3.1. Relation between χeff and ηeff

Consider formulation (4.3) with ∇xV (0) = 0, ∂p(0)/∂xi = −δiq , v(0)
i = kiq , V

(1) = −ηq ,
u

(0)
i = χip, α = −τp and formulation (4.7) with ∇xp(0) = 0, ∂V (0)/∂xi = −δip, v(0)

i = χip,

V (1) = −τp, u(0)
i = kiq , α = −ηq . We obtain successively

(kiq, χip)W +

∫
Ω

σ

(
∂ηq

∂yi
+ εijk kjq B

(0)
k

)(
∂τp

∂yi
+ εijk χip B

(0)
k

)
dΩ

=

∫
Ωf

χqp dΩ = Ωχeff
qp ,

(χip, kiq)W +

∫
Ω

σ

(
∂τp

∂yi
+ δip + εijk χjp B

(0)
k

)(
∂ηq

∂yi
+ εijk kjq B

(0)
k

)
dΩ = 0.

Subtracting term by term gives∫
Ω

σ

(
−∂ηq
∂yp
− εpjk kjq B(0)

k

)
dΩ = Ω χeff

qp ,

which, when considering (3.28), can be written in the form

ηeff
pq = −χeff

qp . (4.12)

Onsager’s relation for the coupling between the macroscopic mass flux and electric
current is satisfied (de Groot & Mazur 1969). Note however that, unlike Onsager’s
approach, the symmetry of the coupling is obtained here from the local field properties
by using a deterministic approach.

4.3.2. χeff and ηeff odd functions of the magnetic field

Consider formulation (3.18) successively with V (1) = V (1)(B(0)) and V (1) = V (1)(−B(0))
and subtract term by term. We obtain

∀ α ∈ V, (V (1)(B(0))− V (1)(−B(0)), α)V

=

∫
Ω

σ[(v(0)(B(0)) + v(0)(−B(0)))× B(0)] · ∇yα dΩ. (4.13)
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Consider now formulation (3.19) successively with v(0) = v(0)(B(0)) and v(0) = v(0)(−B(0))
and add term by term. We have

∀u ∈ W, (v(B(0)) + v(0)(−B(0)), u)W = −2

∫
Ωf

u · ∇xp(0) dΩ

+

∫
Ωf

σf[((v
(0)(B(0)) + v(0)(−B(0)))× B(0))× B(0)] · u dΩ

−
∫
Ωf

σf[(∇yV (1)(B(0))− ∇yV (1)(−B(0)))× B(0)] · u dΩ. (4.14)

Formulations (4.13) and (4.14) ensure the existence of solutions for V (1)(B(0)) −
V (1)(−B(0)) and v(0)(B(0)) + v(0)(−B(0)) that are linear vectorial functions of ∇xp(0). In
particular we have

v(0)(B(0)) + v(0)(−B(0)) = γ ∇xp(0),

where γ is a tensor which depends on y and B(0). On an other hand, relation (3.20)
gives

v(0)(B(0)) + v(0)(−B(0)) = −(k(B(0)) + k(−B(0)))∇xp(0) − (χ(B(0)) + χ(−B(0)))∇xV (0).

Identification of the above two relations yields

χ(B(0)) + χ(−B(0)) = 0,

from which we deduce

χeff(〈B(0)〉) = −χeff(−〈B(0)〉) (4.15)

Due to (4.12) there is a similar relation for ηeff .

4.4. Isotropic porous media

Consider now a macroscopically isotropic porous medium of permeability K(0) and of
effective conductivity σeff(0) in the absence of a magnetic field. Obviously, ηeff(0) = 0
and χeff(0) = 0. Apply a magnetic field, e.g. in the direction X3. All the effective
tensors are 〈B(0)〉-dependent. However, they should be invariant to rotations around
the e3-axis. Tensor K(〈B(0)〉) is a symmetric tensor (4.4). Its invariance under rotations
of axis e3 imposes that its non-diagonal components cancel out. Due to isotropy,
diagonal components in the plane (e1, e2) are equal. There is a similar form for tensor
σeff(〈B(0)〉). We have

K(〈B(0)〉) =

 K(〈B(0)〉) 0 0

0 K(〈B(0)〉) 0
0 0 K(0)

 ,

σeff(〈B(0)〉) =

 σeff(〈B(0)〉) 0 0

0 σeff(〈B(0)〉) 0
0 0 σeff(0)

 .

Consider now the electro-osmotic conductivity χeff(〈B(0)〉). Change the axes (e1, e2, e3)

to (e2, e1,−e3). Isotropy imposes χeff
11 (〈B(0)〉) = χeff

22 (−〈B(0)〉). Isotropy also implies that
diagonal components in the plane (e1, e2) are equal. By using relation (4.15) we obtain

χeff
11 (〈B(0)〉) = χeff

22 (−〈B(0)〉) = χeff
11 (−〈B(0)〉) = −χeff

11 (〈B(0)〉).
Diagonal components cancel out. Finally, the invariance under rotations of axis e3
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Figure 2. (a) Macroscopic porous medium. (b) Periodic cell Ω.

imposes that tensor χeff(〈B(0)〉) (and in the same way tensor ηeff(〈B(0)〉) is antisymmetric
in the plane (e1, e2). With relation (4.12), we have

χeff(〈B(0)〉) =

 0 χeff(〈B(0)〉) 0

−χeff(〈B(0)〉) 0 0
0 0 0

 = ηeff(〈B(0)〉).

In the case of isotropy, the electric conductivity ηeff(〈B(0)〉) associated with the stream-
ing potential effect is equal to the electro-osmotic conductivity χeff(〈B(0)〉).

5. Example
Analytical results are of great interest because they permit us to point out general

features concerning effective coefficients. Unfortunately, such results are available for
only a few pore geometries. We investigate in this section porous media in which the
pore system consists of parallel plane fissures, as shown in figure 2. The porosity is
φ and the pore thickness is denoted h. We denote x = (x1, x2, x3) the macroscopic
dimensional space variable and y = (y1, y2, y3) the local dimensional space variable.
The conducting porous medium is rigid. Both solid and saturating fluid are subjected
to a constant macroscopic magnetic field 〈H (0)〉 = 〈H (0)

3 〉e3, perpendicular to the pore
surfaces and to a macroscopic electric potential V (0)(x). The fluid is also subjected to
a macroscopic gradient of pressure (dp(0)/ dx1) e1 + (dp(0)/dx2) e2. Consequently, the
problem to be solved is reduced to the well-known Hartmann problem (Hartmann
1937). The pore domain under consideration is 0 6 y3 6 (h + e). The periodicity is
arbitrary in the directions y1 and y2. Therefore, p, v, B, H , ψ, E , V and J are functions
of y3, only.

5.1. Macroscopic magnetic field and induction

The macroscopic field satisfies equations (3.5) and (3.6),

〈H (0)〉 = 〈H (0)
3 〉e3 = −∇xψ(0),

∇x × 〈H (0)〉 = 0.

Therefore, we have ψ(0) = ψ(0)(x3) and

H
(0)
1 = 0, H

(0)
2 = 0, H

(0)
3 = −dψ(1)

dy3

− dψ(0)

dx3

.
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Equations (3.2) and (3.3) take the form

d

dy3

[
µ∗
(

dψ(1)

dy3

+
dψ(0)

dx3

)]
= 0 in Ω,

µ∗f

(
dψ(1)

f

dy3

+
dψ(0)

dx3

)
= µ∗s

(
dψ(1)

s

dy3

+
dψ(0)

dx3

)
on Γ (at y3 = 0, h),

where dψ(0)/dx3 is a constant. The unknown ψ(1)(x3, y3) is Ω-periodic and continuous
on Γ . In this particular case, the general solution (3.4) for the potential ψ(1) reduces
to

ψ(1)
s (x3, y3) =

h (µ∗f − µ∗s )
hµ∗s + eµ∗f

(y3 − (h+ e))
dψ(0)

dx3

+ ψ̄(1)(x3) in Ωs,

ψ
(1)
f (x3, y3) =

e(µ∗s − µ∗f)
hµ∗s + eµ∗f

y3

dψ(0)

dx3

+ ψ̄(1)(x3) in Ωf.

Therefore, from equation (3.10), we obtain

B
(0)
1 = 0, B

(0)
2 = 0, B

(0)
3 = − (h+ e)µ∗fµ∗s

hµ∗s + eµ∗f

dψ(0)

dx3

=
(h+ e)µ∗fµ∗s
hµ∗s + eµ∗f

〈H (0)
3 〉 in Ω.

The magnetic induction is independent of the local dimensional variable y. Finally,
the macroscopic model for the magnetic induction (3.9) takes the form,

∇x · 〈B(0)〉 = 0, 〈B(0)〉 = 〈B(0)
3 〉e3,

where

〈B(0)
3 〉 = µ∗eff

33 〈H (0)
3 〉, µ∗eff

33 =
µ∗fµ∗s

φµ∗s + (1− φ)µ∗f
.

5.2. Macroscopic mass and electric fluxes

At the lowest order, the local electric field E (0) is in the form

E
(0)
1 = −dV (0)

dx1

, E
(0)
2 − dV (0)

dx2

, E
(0)
3 = −dV (0)

dx3

− dV (1)

dy3

.

The set of equations (3.13)–(3.17) becomes

µ
d2v

(0)
1

dy2
3

− dp(0)

dx1

+ σfB
(0)
3

(
−dV (0)

dx2

− B(0)
3 v

(0)
1

)
= 0 in Ωf, (5.1)

µ
d2v

(0)
2

dy2
3

− dp(0)

dx2

− σf B(0)
3

(
−dV (0)

dx1

+ B
(0)
3 v

(0)
2

)
= 0 in Ωf, (5.2)

µ
d2v

(0)
3

dy2
3

− dp(1)

dy3

= 0 in Ωf, (5.3)

dv(0)
3

dy3

= 0, in Ωf, (5.4)

d

dy3

[
σ

(
−dV (0)

dx3

− dV (1)

dy3

)]
= 0 in Ω, (5.5)

v
(0)
1 = v

(0)
2 = v

(0)
3 = 0 onΓ (at y3 = 0, h), (5.6)
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σf

(
−dV (0)

dx3

− dV (1)
f

dy3

)
= σs

(
−dV (0)

dx3

− dV (1)
s

dy3

)
on Γ (at y3 = 0, h), (5.7)

where dV (0)/dx1, dV (0)/dx2, dp(0)/dx1, dp(0)/dx2 and B(0)
3 are constants. The unknowns

V (1), v(0) and p(1) are Ω-periodic and the potential V (1) is also continuous on Γ . The
above set of differential equations of variable y3 is easily solved. It can be shown that
the unknowns V (1), v(0) and p(1) given by equations (3.20)–(3.21) can be put into the
form

V (1)
s (x, y3) =

h(σf − σs)
hσs + eσf

(y3 − (h+ e))
dV (0)

dx3

+ V̄ (1)(x) in Ωs,

V
(1)
f (x, y3) =

e(σs − σf)
hσs + eσf

y3

dV (0)

dx3

+ V̄ (1)(x) in Ωf,

v
(0)
1 =

h2

4Ha2

(
−1

µ

dp(0)

dx1

− 2Ha

h

(
σf

µ

)1/2
dV (0)

dx2

)(
1− cosh(2Ha y3/h)

coshHa

)
,

v
(0)
2 =

h2

4Ha2

(
−1

µ

dp(0)

dx2

+
2Ha

h

(
σf

µ

)1/2
dV (0)

dx1

)(
1− cosh(2Ha y3/h)

coshHa

)
,

v
(0)
3 = 0,

p(1) = p(1)(x), ζ = ξ = 0,

where we have used h/2 as the characteristic length and the Hartmann number is
defined by

Ha =

(
σ

µ

)1/2

B
(0)
3

h

2
.

By averaging we obtain the macroscopic flux (3.25) in the form

〈v(0)
1 〉 = −K dp(0)

dx1

− χeff dV (0)

dx2

, 〈v(0)
2 〉 = −K dp(0)

dx2

+ χeff dV (0)

dx1

,

where

K = K11 = K22 =
φh2

4µHa2

(
1− tanhHa

Ha

)
,

χeff = χeff
12 = −χeff

21 =
φh

2Ha

(
σf

µ

)1/2(
1− tanhHa

Ha

)
.

Clearly, K12 = K21 = 0 and χeff
11 = χeff

22 = 0. Tensor χeff is antisymmetric. The

permeability K is strongly affected by the magnetic flux. As B(0)
3 = 0, i.e. 〈H (0)

3 〉 = 0,
we recover the permeability in absence of magnetic flux

K(0) =
φh2

12µ
.

Finally, we obtain the macroscopic current density (3.27), which is the volume average
of the local current density over Ω = Ωs + Ωf:

〈J (0)
1 〉 = −σeff dV (0)

dx1

− ηeff dp(0)

dx2

,
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Figure 3. Dimensionless macroscopic coefficients versus Hartmann number. (i) Dimensionless
permeability Kd(Ha). (ii) χeff

d (Ha) = ηeff
d (Ha). (iii) Dimensionless macroscopic conductivity σeff

d (Ha)
with σs = 0.

〈J (0)
2 〉 = −σeff dV (0)

dx2

+ ηeff dp(0)

dx1

,

〈J (0)
3 〉 = 0,

where

σeff = σeff
11 = σeff

22 = (1− φ)σs + φσf − σfB(0)
3 χeff ,

ηeff = ηeff
12 = −ηeff

21 = σfB
(0)
3 K = χeff ,

and we have

σeff
12 = σeff

21 = ηeff
11 = ηeff

22 = 0.

Note the Onsager relation ηeff = χeff that represents (4.12) and characterizes the
coupling between the macroscopic mass flux and electric current. The evolution with
Hartmann number of dimensionless numbers

Kd(Ha) =
K

K(0)
=

3

Ha2

(
1− tanhHa

Ha

)
,

χeff
d (Ha) = ηeff

d (Ha) =
χeff

(σf/µ)1/2 φh/2
=

1

Ha

(
1− tanhHa

Ha

)
,

σeff
d (Ha) =

σeff(σs = 0)

σf φ
=

tanhHa

Ha
,

is shown in figure 3, see curves (i), (ii) and (iii) respectively.
This simple example illustrates that some features of MHD in homogeneous fluids

remain valid at a macroscopic scale in porous media: due to the body force E × B
exerted at the pore level, a macroscopic electric field dV (0)/dx2 in direction y2 causes
a macroscopic mass flow in direction y1; due to the electromotive field v × B at the
pore level, a macroscopic gradient of pressure in direction y1 causes a macroscopic
electric current in direction y2. These results remain valid for more intricate pore
geometry.
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6. Concluding remarks
We have investigated the macroscopic description of the seepage of conductive fluids

in porous media in the presence of a magnetic field, for finite Hartmann number, i.e.
ε � Ha � ε−1 and finite load factor, i.e. ε � K � ε−1, where ε characterizes the
separation of scales. Returning to dimensional quantities, the equivalent macroscopic
description is given by

∇× 〈H〉 = O(ε) with 〈H〉 = −∇ψ + O(ε), (6.1)

∇ · 〈B〉 = O(ε) with 〈B〉 = µ∗eff〈H〉+ O(ε), (6.2)

∇× 〈E〉 = O(ε), with 〈E〉 = −∇V + O(ε), (6.3)

∇ · 〈J 〉 = O(ε) with 〈J 〉 = −σeff∇V − ηeff∇p+ O(ε), (6.4)

∇ · 〈v〉 = O(ε) with 〈v〉 = −K∇p− χeff∇V + O(ε), (6.5)

where K is the permeability, σeff is the effective electric conductivity, χeff is the electro-
osmotic conductivity and ηeff is the electric conductivity associated with the streaming
potential effect. Under typical conditions like those encountered in magnetohydro-
dynamic flows, the mass flow and the electric current are described by two coupled
equations which are both linear relations of the macroscopic gradient of pressure and
of electric potential. Solving macroscopic boundary value problems requires solving
the two coupled balances (6.4) and (6.5). Due to the small value of the magnetic
Reynolds number under consideration, the macroscopic magnetic field is described
by an independent classical magnetic field equation.

As already noted from Hartmann (1937), the permeability K is strongly affected by
the presence of a magnetic field. However, the permeability tensor remains positive,
as for seepage flows in the absence of magnetic field. The effective conductivity tensor

σeff which depends on the magnetic field is also positive and we have

Kpq(〈B〉) = Kqp(〈B〉), σeff
pq (〈B〉) = σeff

qp (〈B〉). (6.6)

Finally, we have shown by following a deterministic approach that the different
effective coefficients satisfy classical Onsager relations (see Groot & Mazur 1969,
p. 39). In particular, the permeability K and the effective conductivity σeff satisfy the
filtration analogue of the Hall effect and the Hall effect, respectively (see Landau &
Lifshitz 1960, p. 96),

Kpq(−〈B〉) = Kqp(〈B〉), σeff
pq (−〈B〉) = σeff

qp (〈B〉). (6.7)

Relations (6.6) and (6.7) show that K and σeff are even tensorial functions of the
magnetic induction 〈B〉. Moreover the coupling between the macroscopic mass flux
and electric current is characterized by

ηeff
pq = −χeff

qp , χeff(〈B〉) = −χeff(−〈B〉), ηeff(〈B〉) = −ηeff(−〈B〉) (6.8)

Tensors ηeff and χeff are odd tensorial functions of 〈B〉.
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